Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4416, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479718

RESUMO

Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics. Extracellular matrix remodeling in the pulmonary arterial wall, manifested by dysregulated genes implicated in elastin degradation, precedes the onset of pulmonary hypertension. The resulting degradation of elastic fibers is paralleled by an accumulation of fibrillar collagens. Pentagalloyl glucose preserves arterial elastic fibers from elastolysis, reduces inflammation and collagen accumulation, improves pulmonary artery biomechanics, and normalizes right ventricular and pulmonary hemodynamics in a rat model of pulmonary hypertension due to left heart disease. Thus, targeting extracellular matrix remodeling may present a therapeutic approach for pulmonary hypertension due to left heart disease.


Assuntos
Cardiopatias , Hipertensão Pulmonar , Humanos , Animais , Ratos , Artéria Pulmonar , Fenômenos Biomecânicos , Elastina
2.
Ann Biomed Eng ; 51(4): 806-819, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36203118

RESUMO

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aorta that can lead to dissection or rupture. Degradation of elastic fibers is a consistent histopathological feature of TAA that likely contributes to disease progression. Pentagalloyl glucose (PGG) shows promise for stabilizing elastic fibers in abdominal aortic aneurysms, but its efficacy and mechanical effects in the thoracic aorta are unknown. We simulated TAAs using elastase (ELA) to degrade elastic fibers in the mouse ascending aorta and determined the preventative and restorative potential of PGG. Biaxial mechanical tests, constitutive model fitting, and multiphoton imaging were performed on untreated (UNT), PGG, ELA, PGG + ELA, and ELA + PGG treated aortas. PGG treatment alone does not significantly alter mechanical properties or wall structure compared to UNT. ELA treatment alone causes an increase in the unloaded diameter and length, decreased compliance, significant changes in the material constants, and separation of the outer layers of the aortic wall compared to UNT. PGG treatment before or after ELA ameliorates the mechanical and structural changes associated with elastic fiber degradation, with preventative PGG treatment being most effective. These results suggest that PGG is a potential pharmaceutical option to stabilize elastic fibers in TAA.


Assuntos
Aneurisma da Aorta Torácica , Tecido Elástico , Camundongos , Animais , Tecido Elástico/metabolismo , Aorta/patologia , Elastase Pancreática , Preparações Farmacêuticas/metabolismo , Glucose/metabolismo
3.
Eur J Pharmacol ; 910: 174487, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34516951

RESUMO

OBJECTIVE: An Abdominal aortic aneurysm (AAA), a deadly disease in elderly population, is featured by expansion of aortic diameter, degradation and weakening of vasculature. Its common and significant characteristics are disarray and inflammation in vasculature. We tested the hypothesis that the reversal of abdominal aortic aneurysm by pentagalloyl glucose-loaded nanoparticles (PGG-NPs) therapy that targets degraded elastin suppresses inflammatory and immune markers to ameliorate the pathophysiology of the disease in advance stage aneurysm in a porcine pancreatic elastase (PPE)-induced mouse model of AAA. METHODS AND RESULTS: After induction of aneurysm in pathogen-free C57BL/6 male mice by applying PPE peri-adventitially to the abdominal aorta, once a week for two doses of intravenous injections of pentagalloyl glucose-loaded nanoparticles (PGG-NPs) conjugated with elastin targeted antibody were used to reverse the aneurysms. We showed that PGG-NPs therapy could suppress infiltration of macrophages, CD8 and CD4 subsets of T cells, matrix metalloproteinases (MMPs), inflammatory cytokines interferon (IFN-γ) and interleukin (IL)-6 at the local and systemic level. Moreover, such PGG-NPs therapy increases the induction of anti-inflammatory cytokines IL-13, IL-27 and IL-10 at the local and systemic level. The therapy also led to remodeling of elastic lamina at the aneurysm site. CONCLUSION: Nanoparticles-loaded pentagalloyl glucose therapy can be an effective treatment option against advanced stage aneurysms to reverse the disease by ameliorating inflammation and restoring arterial homeostasis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Aneurisma da Aorta Abdominal/tratamento farmacológico , Taninos Hidrolisáveis/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas/química , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/imunologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Elastase Pancreática/efeitos adversos
5.
Sci Rep ; 11(1): 8584, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883612

RESUMO

Abdominal aortic aneurysm (AAA) disease causes dilation of the aorta, leading to aortic rupture and death if not treated early. It is the 14th leading cause of death in the U.S. and 10th leading cause of death in men over age 55, affecting thousands of patients. Despite the prevalence of AAA, no safe and efficient pharmacotherapies exist for patients. The deterioration of the elastic lamina in the aneurysmal wall is a consistent feature of AAAs, making it an ideal target for delivering drugs to the AAA site. In this research, we conjugated nanoparticles with an elastin antibody that only targets degraded elastin while sparing healthy elastin. After induction of aneurysm by 4-week infusion of angiotensin II (Ang II), two biweekly intravenous injections of pentagalloyl glucose (PGG)-loaded nanoparticles conjugated with elastin antibody delivered the drug to the aneurysm site. We show that targeted delivery of PGG could reverse the aortic dilation, ameliorate the inflammation, restore the elastic lamina, and improve the mechanical properties of the aorta at the AAA site. Therefore, simple iv therapy of PGG loaded nanoparticles can be an effective treatment option for early to middle stage aneurysms to reverse disease progression and return the aorta to normal homeostasis.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Taninos Hidrolisáveis/uso terapêutico , Nanopartículas/uso terapêutico , Animais , Anticorpos/imunologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Elastina/imunologia , Taninos Hidrolisáveis/administração & dosagem , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Soroalbumina Bovina
6.
Ann Biomed Eng ; 48(8): 2268-2278, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32240423

RESUMO

Elastin is a key structural protein and its pathological degradation deterministic in aortic aneurysm (AA) outcomes. Unfortunately, using current diagnostic and clinical surveillance techniques the integrity of the elastic fiber network can only be assessed invasively. To address this, we employed fragmented elastin-targeting gold nanoparticles (EL-AuNPs) as a diagnostic tool for the evaluation of unruptured AAs. Electron dense EL-AuNPs were visualized within AAs using micro-computed tomography (micro-CT) and the corresponding Gold-to-Tissue volume ratios quantified. The Gold-to-Tissue volume ratios correlated strongly with the concentration (0, 0.5, or 10 U/mL) of infused porcine pancreatic elastase and therefore the degree of elastin damage. Hyperspectral mapping confirmed the spatial targeting of the EL-AuNPs to the sites of damaged elastin. Nonparametric Spearman's rank correlation indicated that the micro-CT-based Gold-to-Tissue volume ratios had a strong correlation with loaded (ρ = 0.867, p-val = 0.015) and unloaded (ρ = 0.830, p-val = 0.005) vessel diameter, percent dilation (ρ = 0.976, p-val = 0.015), circumferential stress (ρ = 0.673, p-val = 0.007), loaded (ρ = - 0.673, p-val = 0.017) and unloaded (ρ = - 0.697, p-val = 0.031) wall thicknesses, circumferential stretch (ρ = - 0.7234, p-val = 0.018), and lumen area compliance (ρ = - 0.831, p-val = 0.003). Likewise, in terms of axial force and axial stress vs. stretch, the post-elastase vessels were stiffer. Collectively, these findings suggest that, when combined with CT imaging, EL-AuNPs can be used as a powerful tool in the non-destructive estimation of mechanical and geometric features of AAs.


Assuntos
Aneurisma Aórtico/diagnóstico por imagem , Meios de Contraste/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Microtomografia por Raio-X , Animais , Aneurisma Aórtico/induzido quimicamente , Meios de Contraste/química , Modelos Animais de Doenças , Ouro/química , Masculino , Nanopartículas Metálicas/química , Camundongos , Elastase Pancreática/toxicidade
7.
PLoS One ; 15(3): e0227165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218565

RESUMO

AIM: Abdominal aortic aneurysms (AAA) is a life-threatening weakening and expansion of the abdominal aorta due to inflammatory cell infiltration and gradual degeneration of extracellular matrix (ECM). There are no pharmacological therapies to treat AAA. We tested the hypothesis that nanoparticle (NP) therapy that targets degraded elastin and delivers anti-inflammatory, anti-oxidative, and ECM stabilizing agent, pentagalloyl glucose (PGG) will reverse advance stage aneurysm in an elastase-induced mouse model of AAA. METHOD AND RESULTS: Porcine pancreatic elastase (PPE) was applied periadventitially to the infrarenal aorta in mice and AAA was allowed to develop for 14 days. Nanoparticles loaded with PGG (EL-PGG-NPs) were then delivered via IV route at 14-day and 21-day (10 mg/kg of body weight). A control group of mice received no therapy. The targeting of NPs to the AAA site was confirmed with fluorescent dye marked NPs and gold NPs. Animals were sacrificed at 28-d. We found that targeted PGG therapy reversed the AAA by decreasing matrix metalloproteinases MMP-9 and MMP-2, and the infiltration of macrophages in the medial layer. The increase in diameter of the aorta was reversed to healthy controls. Moreover, PGG treatment restored degraded elastic lamina and increased the circumferential strain of aneurysmal aorta to the healthy levels. CONCLUSION: Our results support that site-specific delivery of PGG with targeted nanoparticles can be used to treat already developed AAA. Such therapy can reverse inflammatory markers and restore arterial homeostasis.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/tratamento farmacológico , Portadores de Fármacos/química , Taninos Hidrolisáveis/administração & dosagem , Imunoconjugados/administração & dosagem , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Modelos Animais de Doenças , Elastina/antagonistas & inibidores , Elastina/imunologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Ouro , Humanos , Imunoconjugados/imunologia , Injeções Intravenosas , Masculino , Nanopartículas Metálicas/química , Camundongos , Elastase Pancreática/administração & dosagem , Elastase Pancreática/toxicidade , Soroalbumina Bovina/química , Ultrassonografia
8.
Theranostics ; 9(14): 4156-4167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281538

RESUMO

Background: Abdominal aortic aneurysms (AAA) are characterized by a progressive disruption and weakening of the extracellular matrix (ECM) leading to dilation of the aorta which can be fatal if not treated. Current diagnostic imaging modalities provides little insight on the varying degree of ECM degeneration that precedes rupture in AAAs. Targeted delivery of contrast agents such as gold nanoparticles (GNPs) that bind to degraded matrix could prove useful when combined with computed tomography (CT) to provide a non-invasive surrogate marker of AAA rupture potential. Methods: AAAs were induced by chronic infusion of angiotensin II (AngII) into low density-lipoprotein receptor-deficient (LDLr -/-) mice in combination with a high-fat diet. Abdominal ultrasound was used to monitor disease progression and to assess the circumferential strain throughout the cardiac cycle. At six weeks, GNPs conjugated with an elastin antibody (EL-GNP) were injected retro-orbitally. Mice were euthanized 24 hours after EL-GNP injection, and aortas were explanted and scanned ex-vivo with a micro-CT system. Histological assessment and 3D models of the aneurysms with micro-CT were used to determine the EL-GNPs distribution. Isolated vessel burst pressure testing was performed on each aneurysmal aorta to quantify rupture strength and to assess rupture location. Results: Aneurysms were found along the suprarenal aorta in AngII infused mice. Darkfield microscopy indicated EL-GNPs accumulation around the site of degraded elastin while avoiding the healthy and intact elastin fibers. Using nonlinear regression, the micro-CT signal intensity of EL-GNPs along the suprarenal aortas correlated strongly with burst pressures (R2=0.9415) but not the dilation as assessed by ultrasound measurements. Conclusions: Using an established mouse model of AAA, we successfully demonstrated in vivo targeting of EL-GNPs to damaged aortic elastin and correlated micro-CT-based signal intensities with burst pressures. Thus, we show that this novel targeting technique can be used as a diagnostic tool to predict the degree of elastin damage and therefore rupture potential in AAAs better than the extent of dilation.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Elastina/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL/metabolismo , Microtomografia por Raio-X
9.
Sci Rep ; 9(1): 2629, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796300

RESUMO

Medial arterial calcification (MAC) is a common outcome in diabetes and chronic kidney disease (CKD). It occurs as linear mineral deposits along the degraded elastin lamellae and is responsible for increased aortic stiffness and subsequent cardiovascular events. Current treatments for calcification, particularly in CKD, are predominantly focused on regulating the mineral disturbance and other risk factors. Ethylene diamine tetraacetic acid (EDTA), a chelating agent, can resorb mineral deposits, but the systemic delivery of EDTA may cause side effects such as hypocalcemia and bone resorption. We have developed elastin antibody conjugated albumin nanoparticles that target only degraded elastin in vasculature while sparing healthy tissues. In this study, we tested a targeted nanoparticle-based EDTA chelation therapy to reverse CKD-associated MAC. Renal failure was induced in Sprague-Dawley rats by a high adenine diet supplemented by high P and Ca for 28 days that led to MAC. Intravenous delivery of DiR dye-loaded nanoparticles confirmed targeting to vascular degraded elastin and calcification sites within 24 hours. Next, EDTA-loaded albumin nanoparticles conjugated with an anti-elastin antibody were intravenously injected twice a week for two weeks. The targeted nanoparticles delivered EDTA at the site of vascular calcification and reversed mineral deposits without any untoward effects. Systemic EDTA injections or blank nanoparticles were ineffective in reversing MAC. Reversal of calcification seems to be stable as it did not return after the treatment was stopped for an additional four weeks. Targeted EDTA chelation therapy successfully reversed calcification in this adenine rat model of CKD. We consider that targeted NP therapy will provide an attractive option to reverse calcification and has a high potential for clinical translation.


Assuntos
Artérias/patologia , Terapia por Quelação , Ácido Edético/uso terapêutico , Nanopartículas/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Soroalbumina Bovina/uso terapêutico , Calcificação Vascular/tratamento farmacológico , Animais , Aorta/diagnóstico por imagem , Aorta/patologia , Peso Corporal , Osso e Ossos/patologia , Modelos Animais de Doenças , Rim/patologia , Metaloproteinases da Matriz/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Nanopartículas/ultraestrutura , Fenótipo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico por imagem , Distribuição Tecidual , Calcificação Vascular/sangue , Calcificação Vascular/complicações , Calcificação Vascular/diagnóstico por imagem
10.
Circ Res ; 117(11): e80-9, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26443597

RESUMO

RATIONALE: Matrix metalloproteinases (MMPs)-mediated extracellular matrix destruction is the major cause of development and progression of abdominal aortic aneurysms. Systemic treatments of MMP inhibitors have shown effectiveness in animal models, but it did not translate to clinical success either because of low doses used or systemic side effects of MMP inhibitors. We propose a targeted nanoparticle (NP)-based delivery of MMP inhibitor at low doses to the abdominal aortic aneurysms site. Such therapy will be an attractive option for preventing expansion of aneurysms in patients without systemic side effects. OBJECTIVE: Our previous study showed that poly(d,l-lactide) NPs conjugated with an antielastin antibody could be targeted to the site of an aneurysm in a rat model of abdominal aortic aneurysms. In the study reported here, we tested whether such targeted NPs could deliver the MMP inhibitor batimastat (BB-94) to the site of an aneurysm and prevent aneurysmal growth. METHODS AND RESULTS: Poly(d,l-lactide) NPs were loaded with BB-94 and conjugated with an elastin antibody. Intravenous injections of elastin antibody-conjugated BB-94-loaded NPs targeted the site of aneurysms and delivered BB-94 in a calcium chloride injury-induced abdominal aortic aneurysms in rats. Such targeted delivery inhibited MMP activity, elastin degradation, calcification, and aneurysmal development in the aorta (269% expansion in control versus 40% elastin antibody-conjugated BB-94-loaded NPs) at a low dose of BB-94. The systemic administration of BB-94 alone at the same dose was ineffective in producing MMP inhibition. CONCLUSIONS: Targeted delivery of MMP inhibitors using NPs may be an attractive strategy to inhibit aneurysmal progression.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/tratamento farmacológico , Portadores de Fármacos , Imunoconjugados/administração & dosagem , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Metaloproteinases da Matriz/metabolismo , Nanopartículas , Fenilalanina/análogos & derivados , Poliésteres/química , Tiofenos/administração & dosagem , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/imunologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/patologia , Cloreto de Cálcio , Química Farmacêutica , Modelos Animais de Doenças , Progressão da Doença , Elastina/imunologia , Elastina/metabolismo , Imunoconjugados/química , Imunoconjugados/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/metabolismo , Camundongos , Fenilalanina/administração & dosagem , Fenilalanina/química , Fenilalanina/metabolismo , Proteólise , Células RAW 264.7 , Ratos Sprague-Dawley , Tiofenos/química , Tiofenos/metabolismo , Fatores de Tempo , Calcificação Vascular/enzimologia , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
11.
J Biomater Appl ; 28(5): 757-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24371208

RESUMO

Glutaraldehyde cross-linked bioprosthetic heart valves fail within 12-15 years of implantation due to limited durability. Glutaraldehyde does not adequately stabilize extracellular matrix components such as glycosaminoglycans and elastin, and loss of these components could be a major cause of degeneration of valve after implantation. We have shown earlier that neomycin-based cross-linking stabilizes glycosaminoglycans in the tissue but fails to stabilize elastin component. Here, we report a new treatment where neomycin and pentagalloyl glucose (PGG) were incorporated into glutaraldehyde cross-linking neomycin-PGG-Glutaraldehyde (NPG) to stabilize both glycosaminoglycans and elastin in porcine aortic valves. In vitro studies demonstrated a marked increase in extracellular matrix stability against enzymatic degradation after cross-linking and 10 month storage in NPG group when compared to glutaraldehyde controls. Tensile properties showed increased lower elastic modulus in both radial and circumferential directions in NPG group as compared to glutaraldehyde, probably due to increased elastin stabilization with no changes in upper elastic modulus and extensibility. The enhanced extracellular matrix stability was further maintained in NPG-treated tissues after rat subdermal implantation for three weeks. NPG group also showed reduced calcification when compared to glutaraldehyde controls. We conclude that NPG cross-linking would be an excellent alternative to glutaraldehyde cross-linking of bioprosthetic heart valves to improve its durability.


Assuntos
Bioprótese , Elastina/análise , Glicosaminoglicanos/análise , Próteses Valvulares Cardíacas , Taninos Hidrolisáveis/química , Neomicina/química , Calcinose , Varredura Diferencial de Calorimetria , Desnaturação Proteica
12.
Diab Vasc Dis Res ; 10(5): 410-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23754846

RESUMO

Diabetes mellitus (DM) is a chronic disease in which the body either does not use or produce the glucose metabolising hormone insulin efficiently. Calcification of elastin in the arteries of diabetics is a major predictor of cardiovascular diseases. It has been previously shown that elastin degradation products work synergistically with transforming growth factor-beta 1 (TGF-ß1) to induce osteogenesis in vascular smooth muscle cells. In this study, we tested the hypothesis that high concentration of glucose coupled with elastin degradation products and TGF-ß1 (a cytokine commonly associated with diabetes) will cause a greater degree of osteogenesis compared to normal vascular cells. Thus, the goal of this study was to analyse the effects of high concentration of glucose, elastin peptides and TGF-ß1 on bone-specific markers like alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (RUNX2). We demonstrated using relative gene expression and specific protein assays that elastin degradation products in the presence of high glucose cause the increase in expression of the specific elastin-laminin receptor-1 (ELR-1) and activin receptor-like kinase-5 (ALK-5) present on the surface of the vascular cells, in turn leading to overexpression of typical osteogenic markers like ALP, OCN and RUNX2. Conversely, blocking of ELR-1 and ALK-5 strongly suppressed the expression of the osteogenic proteins. In conclusion, our results indicate that glucose plays an important role in amplifying the osteogenesis induced by elastin peptides and TGF-ß1, possibly by activating the ELR-1 and ALK-5 signalling pathways.


Assuntos
Elastina/farmacologia , Glucose/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Células Cultivadas , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
13.
Acta Biomater ; 9(1): 4653-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23036945

RESUMO

While the role of collagen and elastin fibrous components in heart valve valvular biomechanics has been extensively investigated, the biomechanical role of the glycosaminoglycan (GAG) gelatinous-like material phase remains unclear. In the present study, we investigated the biomechanical role of GAGs in porcine aortic valve (AV) leaflets under tension utilizing enzymatic removal. Tissue specimens were removed from the belly region of porcine AVs and subsequently treated with either an enzyme solution for GAG removal or a control (buffer with no enzyme) solution. A dual stress level test methodology was used to determine the effects at low and high (physiological) stress levels. In addition, planar biaxial tests were conducted both on-axis (i.e. aligned to the circumferential and radial axes) and at 45° off-axis to induce maximum shear, to explore the effects of augmented fiber rotations on the fiber-fiber interactions. Changes in hysteresis were used as the primary metric of GAG functional assessment. A simulation of the low-force experimental setup was also conducted to clarify the internal stress system and provide viscoelastic model parameters for this loading range. Results indicated that under planar tension the removal of GAGs had no measureable affect extensional mechanical properties (either on- or 45° off-axis), including peak stretch, hysteresis and creep. Interestingly, in the low-force range, hysteresis was markedly reduced, from 35.96±2.65% in control group to 25.00±1.64% (p<0.001) as a result of GAG removal. Collectively, these results suggest that GAGs do not play a direct role in modulating the time-dependent tensile properties of valvular tissues. Rather, they appear to be strongly connected with fiber-fiber and fiber-matrix interactions at low force levels. Thus, we speculate that GAGs may be important in providing a damping mechanism to reduce leaflet flutter when the leaflet is not under high tensile stress.


Assuntos
Valva Aórtica/fisiologia , Glicosaminoglicanos/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Próteses Valvulares Cardíacas , Masculino , Suínos , Resistência à Tração
14.
Biomaterials ; 33(1): 1-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21993239

RESUMO

Percutaneous heart valves are revolutionizing valve replacement surgery by offering a less invasive treatment option for high-risk patient populations who have previously been denied the traditional open chest procedure. Percutaneous valves need to be crimped to accommodate a small-diameter catheter during deployment, and they must then open to the size of heart valve. Thus the material used must be strong and possess elastic recoil for this application. Most percutaneous valves utilize bovine pericardium as a material of choice. One possible method to reduce the device delivery diameter is to utilize a thin, highly elastic tissue. Here we investigated porcine vena cava as an alternative to bovine pericardium for percutaneous valve application. We compared the structural, mechanical, and in vivo properties of porcine vena cava to those of bovine pericardium. While the extracellular matrix fibers of pericardium are randomly oriented, the vena cava contains highly aligned collagen and elastin fibers that impart strength to the vessel in the circumferential direction and elasticity in the longitudinal direction. Moreover, the vena cava contains a greater proportion of elastin, whereas the pericardium matrix is mainly composed of collagen. Due to its high elastin content, the vena cava is significantly less stiff than the pericardium, even after crosslinking with glutaraldehyde. Furthermore, the vena cava's mechanical compliance is preserved after compression under forces similar to those exerted by a stent, whereas pericardium is significantly stiffened by this process. Bovine pericardium also showed surface cracks observed by scanning electron microscopy after crimping that were not seen in vena cava tissue. Additionally, the vena cava exhibited reduced calcification (46.64 ± 8.15 µg Ca/mg tissue) as compared to the pericardium (86.79 ± 10.34 µg/mg). These results suggest that the vena cava may provide enhanced leaflet flexibility, tissue resilience, and tissue integrity in percutaneous heart valves, ultimately reducing the device profile while improving the durability of these valves.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Valvas Cardíacas , Pericárdio , Veias Cavas/metabolismo , Animais , Varredura Diferencial de Calorimetria , Bovinos , Colagenases/metabolismo , Técnicas In Vitro , Suínos
15.
J Biomed Mater Res B Appl Biomater ; 99(2): 217-29, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21714085

RESUMO

Glutaraldehyde (GLUT) crosslinked porcine aortic heart valves are continued to be extensively used in heart valve replacement surgeries. GLUT does not crosslink glycosaminoglycans in the tissue and we have demonstrated that GAG loss is associated with tissue degeneration. In this study, we examined the ability of neomycin to enhance GLUT crosslinking to stabilize GAGs, as well as provide evidence of improved functional integrity. Neomycin enhanced GLUT crosslinked (NG) leaflets exposed to collagenase and elastase enzymes exhibited an increased resistance to proteolytic degradation. Furthermore, NG leaflets exhibited small but significant increases in collagen denaturation temperatures when compared to that of standard GLUT crosslinked BHVs. NG leaflets subjected to storage, accelerated cyclic fatigue, and in vitro enzyme mediated GAG degradation revealed improved GAG stabilization versus standard GLUT crosslinked valves, which sustained substantial decreases in GAG content. Ultrastructural analysis using transmission electron microscopy qualitatively confirmed NG leaflets preserved GAGs after enzymatic degradation. Biomechanical analyses demonstrated that NG leaflets were functionally similar to GLUT tissues but were slightly stiffer under both planar biaxial tension and under flexure. Interestingly, after GAGase treatment, GLUT tissues showed increased areal compliance and reduced hysteresis, while NG leaflets were unchanged. Collectively, NG cross-linking functionally insulated the tissue from GAG digestion, and imparted modest additional matrix stiffness but maintained tissue hysteresis properties.


Assuntos
Valva Aórtica/patologia , Bioprótese , Reagentes de Ligações Cruzadas/farmacologia , Glutaral/farmacologia , Próteses Valvulares Cardíacas , Neomicina/farmacologia , Animais , Antibacterianos/farmacologia , Varredura Diferencial de Calorimetria/métodos , Colágeno/química , Elastina/química , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Microscopia Eletrônica de Transmissão/métodos , Suínos , Temperatura
16.
J Biomed Mater Res B Appl Biomater ; 92(1): 168-77, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19810110

RESUMO

Glutaraldehyde crosslinked bioprosthetic heart valves (BHVs) have two modalities of failure: degeneration (cuspal tear due to matrix failure) and calcification. They can occur independently as well as one can lead to the other causing co-existence. Calcific failure has been extensively studied before and several anti-calcification treatments have been developed; however, little research is directed to understand mechanisms of valvular degeneration. One of the shortcomings of glutaraldehyde fixation is its inability to stabilize all extracellular matrix components in the tissue. Previous studies from our lab have demonstrated that neomycin could be used as a fixative to stabilize glycosaminoglycans (GAGs) present in the valve to improve matrix properties. But neomycin fixation did not prevent cuspal calcification. In the present study, we wanted to enhance the anti-calcification potential of neomycin fixed valves by pre-treating with ethanol or removing the free aldehydes by sodium borohydride treatment. Ethanol treatment has been previously used and found to have excellent anti-calcification properties for valve cusps. Results demonstrated in this study suggest that neomycin followed by ethanol treatment effectively preserves GAGs both in vitro as well as in vivo after subdermal implantation in rats. In vivo calcification was inhibited in neomycin fixed cusps pretreated with ethanol compared to glutaraldehyde (GLUT) control. Sodium borohydride treatment by itself did not inhibit calcification nor stabilized GAGs against enzymatic degradation. Neomycin fixation followed by ethanol treatment of BHVs could prevent both modalities of failure, thereby increasing the effective durability and lifetime of these bioprostheses several fold.


Assuntos
Bioprótese , Calcinose/prevenção & controle , Etanol/administração & dosagem , Próteses Valvulares Cardíacas , Neomicina/administração & dosagem , Animais , Colágeno/química , Colagenases/metabolismo , Glicosaminoglicanos/análise , Elastase Pancreática/metabolismo , Ratos , Suínos
17.
J Biomed Mater Res A ; 90(4): 1073-82, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18671270

RESUMO

A variety of approaches have been described for the modification of synthetic, water soluble polymers with hydrolytically degradable bonds and terminal vinyl groups that can be crosslinked in situ by photo- or redox-initiated free radical polymerization. However, changes in macromer concentration, functionality, and molecular weight commonly used to achieve variable degradation rates simultaneously alter hydrogel mechanical properties. Herein, we describe a novel, two-step synthetic route for the preparation of hydrolytically degradable, crosslinkable PEG-based macromers based on chemical intermediaries that form ester linkages with variable alkyl chain length. Changes in the concentration of a single macromer were shown to provide effective variation of degradation, but with corresponding significant changes in tensile properties. Through variation in the alkyl chain length of the chemical intermediary, variable degradation times ranging from weeks to months are achieved, without significantly affecting initial gelation efficiency, swelling, or tensile properties. When modified with adhesive ligands, hydrogels supported viability of encapsulated and adherent cells. Controlled release of a model protein (Immunoglobulin G) was attained as a function of hydrogel degradation rate. Independent control of hydrogel degradation and mechanical properties will offer improved flexibility for studying the effect of these material characteristics on cellular function and may be useful in the design of matrices for tissue engineering and controlled release of bioactive molecules.


Assuntos
Portadores de Fármacos/síntese química , Hidrogéis/síntese química , Materiais Biocompatíveis , Cápsulas , Adesão Celular , Sobrevivência Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Ésteres/química , Fibroblastos/citologia , Humanos , Hidrogéis/química , Hidrólise , Imunoglobulina G/administração & dosagem , Polietilenoglicóis/química , Resistência à Tração
18.
Acta Biomater ; 5(4): 983-92, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19091637

RESUMO

Bioprosthetic heart valve (BHV) cusps have a complex architecture consisting of an anisotropic arrangement of collagen, glycosaminoglycans (GAGs) and elastin. Glutaraldehyde (GLUT) is used as a fixative for all clinical BHV implants; however, it only stabilizes the collagen component of the tissue, and other components such as GAGs and elastin are lost from the tissue during processing, storage or after implantation. We have shown previously that the effectiveness of the chemical crosslinking can be increased by incorporating neomycin trisulfate, a hyaluronidase inhibitor, to prevent the enzyme-mediated GAG degradation. In the present study, we optimized carbodiimide-based GAG-targeted chemistry to incorporate neomycin into BHV cusps prior to conventional GLUT crosslinking. This crosslinking leads to enhanced preservation of GAGs during in vitro cyclic fatigue and storage. The neomycin group showed greater GAG retention after both 10 and 50 million accelerated fatigue cycles and after 1 year of storage in GLUT solution. Thus, additional binding of neomycin to the cusps prior to standard GLUT crosslinking could enhance tissue stability and thus heart valve durability.


Assuntos
Matriz Extracelular/metabolismo , Próteses Valvulares Cardíacas , Neomicina/metabolismo , Colágeno/metabolismo , Reagentes de Ligações Cruzadas , Elastina , Matriz Extracelular/efeitos dos fármacos , Hexosaminas , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , Neomicina/farmacologia , Estresse Mecânico , Fatores de Tempo
19.
Biomaterials ; 29(28): 3781-91, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18602156

RESUMO

Biodegradable polyurethanes (PUs) were synthesized from methylene di-p-phenyl-diisocyanate (MDI), polycaprolactone diol (PCL-diol) and N,N-bis (2-hydorxyethyl)-2-aminoethane-sulfonic acid (BES), serving as a hard segment, soft segment and chain extender, respectively. MDI was chosen due to its reactivity and wide application in synthesis of biomedical polyurethanes due to its reactivity; PCL-diol was chosen because of its biodegradability; and BES was chosen because it allowed the introduction sulfonic acid groups onto the polymer chains. We evaluated the polyurethanes' degradation rate, mechanical properties, hydrophilicity, antithrombogenecity, and ability to support fibroblast cell attachment and growth by comparing with polymers having a 2,2-(methylimino)diethanol (MIDE) chain extender. Mechanical testing demonstrated that the PU containing BES has tensile strengths of about 17 MPa and elongations up to 400%, about three times the strength and four times the elongation than the MIDE based PUs. The polymers showed decreased in vitro degradation rates, lower glass transition temperature (T(g)) and hydrophilicity possibly due to enhanced microphase separation. Preliminary cytocompatibility studies showed that all the PUs are non-toxic, but PU containing BES exhibited much lower cell attachment and proliferation than the MIDE chain extended polymers. An in vitro platelet adhesion assay showed lower platelet attachment on BES containing PU. Additionally, due to the existence of sulfonic acid groups, the BES extended PU became water soluble in basic condition and insoluble in acidic condition, a phenomenon that is reversible at pH value of 8.7, making this a pH sensitive polymer attractive for bioprinting applications. By adding acetic acid into an inkjet cartridge and printing it onto a PU solution with pH above 8.7, precision fabricated scaffolds can be obtained, suggesting that BES based PUs are promising candidates as synthetic inks used for customizable fabrication of tissue engineering scaffolds.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Poliuretanos/química , Impressão/métodos , Tecidos Suporte , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Proliferação de Células , Células Cultivadas , Elastômeros/síntese química , Elastômeros/metabolismo , Teste de Materiais , Estrutura Molecular , Poliuretanos/síntese química , Poliuretanos/metabolismo , Suínos , Engenharia Tecidual/métodos
20.
Biomaterials ; 29(11): 1645-53, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18199477

RESUMO

Bioprosthetic valves are used in thousands of heart valve replacement surgeries. Existing glutaraldehyde-crosslinked bioprosthetic valves fail due to either calcification or degeneration. Glutaraldehyde crosslinking does not stabilize valvular glycosaminoglycans (GAGs). GAGs, predominantly present in the medial spongiosa layer of native heart valve cusps, play an important role in regulating physico-mechanical behavior of the native cuspal tissue during dynamic motion. The primary objective of this study was to identify the role of cuspal GAGs in valve tissue buckling. Glutaraldehyde-crosslinked cusps showed extensive buckling compared to fresh, native cusps. Removal of GAGs by treatment with GAG-degrading enzymes led to a marked increase in buckling behavior in glutaraldehyde-crosslinked cusps. We demonstrate that the retention of valvular GAGs by carbodiimide crosslinking together with chemical attachment of neomycin trisulfate (a hyaluronidase inhibitor), prior to glutaraldehyde crosslinking, reduces the extent of buckling in bioprosthetic heart valves. Furthermore, following exposure to GAG-digestive enzymes, neomycin-trisulfate-bound cusps experienced no alterations in buckling behavior. Such moderate buckling patterns mimicked that of fresh, untreated cusps subjected to similar bending curvatures. Thus, GAG stabilization may subsequently improve the durability of these bioprostheses.


Assuntos
Bioprótese , Glicosaminoglicanos/química , Próteses Valvulares Cardíacas , Animais , Enzimas/metabolismo , Glicosaminoglicanos/metabolismo , Microscopia Eletrônica de Varredura , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...